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Extended Abstract 
 
1. Introduction 

 Global spectral models typically adopt Gaussian quadrature in performing spherical harmonics 

transforms, with the consequence of the nodes (grid-points) placed on irregularly-spaced Gaussian 

latitudes. As we move into very high resolutions, it becomes necessary to accurately represent the nature’s 

nonhydrostatic aspects into the model. Semi-implicit time-stepping applied to nonhydrostatic equations 

necessitates solution of non-constant coefficient Helmholtz-type problem, which is difficult to solve 

efficiently by the current massively parallel HPC architecture. A promising approach with demonstrably 

high parallel efficiency to this type of problem is the multigrid, which exploits the hierarchy of grids to 

accelerate iterative elliptic solvers. However, a multigrid approach is difficult to implement on the current 

global spectral models because the Gaussian grids do not nest.  

  In this study we propose a new, nestable grid on a sphere which would allow straight multigrid 

implementation. The proposed grid and quadrature rules are implemented on a shallow-water equations 

(SWE) model and a three-dimensional hydrostatic primitive equations (HPE) model. Detailed description 

of this work can be found in our recent publication [1]. 

 

2. Grid and Quadrature formulation 

   In the proposed scheme, numerical integration in the meridional direction is performed using a variant 

of Clenshaw-Curtis-type quadrature (Fejér’s second rule) [2] instead of the conventional Gauss-Legendre 

rule. With this quadrature rule, the nodes are aligned on colatitudes 𝜃" =
"$
%&'

		(	𝑗 = 1,⋯ , 𝐽), meaning that 

the grid does not include that poles and the latitudinal grid points are equidistant. This grid is nestable 

since the grid points for J/2 nodes can be constructed by skipping every other grid of the nodes for J-point 

rule starting from j=2. One shortcoming of this grid is that J ≥2N+1 meridional nodes are required to 

ensure exact transform for the truncation total wavenumber of N, unlike the Gaussian grid which requires 

only (2N-1)/2 nodes.  

 

 



3. Numerical orthonormality and aliasing errors on nonlinear terms 

  The proposed grid and quadrature are implemented on the code of the operational global model of 

Japan Meteorological Agency (JMA-GSM) and tested for numerical orthonormality of the associated 

Legendre functions. The orthonormality is found to be satisfied up to machine precision as long as the 

condition J ≥2N+1 is met. The proposed quadrature formally incurs aliasing errors for nonlinear terms of 

quadratic or higher orders, but the relative errors caused by the aliasing are found to be small (at most 

O(10–3) in practice. 

 

4. Test case results 

  An SWE model and an HPE model based on JMA-GSM are adapted to use the proposed 

Clenshaw-Curtis grid and are compared with their original Gaussian-grid versions within the framework 

of idealized test cases ([3,4] for SWE and [5] for HPE) with various horizontal resolutions up to Tc479 

(Δx〜20 km). The integration results from the two versions of the models are confirmed to be nearly 

identical for any of the investigated test cases. 

 

5. Future direction: Multigrid-based grid-spectral hybrid model 

  The proposed grid can be adapted to take a structured form 

(e.g., as in Fig.1). We postulate that employing the 

pseudo-spectral multigrid method will foster smooth and 

gradual transition from spectral to grid-based modelling since 

the pseudo-spectral horizontal derivatives can be readily 

replaced by local, stencil-based horizontal derivatives. Given 

that grid-based elliptic solvers tend to be less efficient at larger 

scale, as grid/spectral hybrid approach, where a grid-based 

multigrid method with shallow layers is combined with a 

spectral elliptic solver used only at the coarsest grid with 

moderate resolution, would be a reasonable strategy that 

compromises the need to avoid global inter-node 

communications and to maintain high accuracy and fast 

convergence rate. 
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Fig1:Icositetrahedral (24-face 

polyhedral) Clenshaw-Curtis 
grid. 


